Fuzzy rough sets with hierarchical quantitative attributes
نویسندگان
چکیده
Machine learning can extract desired knowledge and ease the development bottleneck in building expert systems. Among the proposed approaches, deriving classification rules from training examples is the most common. Given a set of examples, a learning program tries to induce rules that describe each class. The rough-set theory has served as a good mathematical tool for dealing with data classification problems. It adopts the concept of equivalence classes to partition training instances according to some criteria. In the past, we thus proposed a fuzzy-rough approach to produce a set of certain and possible rules from quantitative data. Attributes are, however, usually organized into hierarchy in real applications. This paper thus extends our previous approach to deal with the problem of producing a set of cross-level maximally general fuzzy certain and possible rules from examples with hierarchical and quantitative attributes. The proposed approach combines the rough-set theory and the fuzzy-set theory to learn. It is more complex than learning from single-level values, but may derive more general knowledge from data. Fuzzy boundary approximations, instead of upper approximations, are used to find possible rules, thus reducing some subsumption checking. Some pruning heuristics are adopted in the proposed algorithm to avoid unnecessary search. A simple example is also given to illustrate the proposed approach.
منابع مشابه
Learning with Hierarchical Quantitative Attributes by Fuzzy Rough Sets
This paper proposes an approach to deal with the problem of producing a set of cross-level fuzzy certain and possible rules from examples with hierarchical and quantitative attributes. The proposed approach combines the rough-set theory and the fuzzy-set theory to learn. Some pruning heuristics are adopted in the proposed algorithm to avoid unnecessary search. A simple example is also given to ...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملUncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملROUGH SET OVER DUAL-UNIVERSES IN FUZZY APPROXIMATION SPACE
To tackle the problem with inexact, uncertainty and vague knowl- edge, constructive method is utilized to formulate lower and upper approx- imation sets. Rough set model over dual-universes in fuzzy approximation space is constructed. In this paper, we introduce the concept of rough set over dual-universes in fuzzy approximation space by means of cut set. Then, we discuss properties of rough se...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009